Disable copy

Showing posts with label calculus. Show all posts
Showing posts with label calculus. Show all posts

Tuesday, 28 November 2017

Taylor Series

Taylor Series

     The Taylor series for $f(x)$ about $x=a$ is defined as
$f(x)=f(a)+f'(a)(x-a)+\cfrac{f''(a)(x-a)^2}{2!}+\dots +\cfrac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!}+R_n$  (1)

where $R_n=\frac{f^{(n)}(x_0)(x-a)^n}{n!},$ $x_0$ between $a$ and $x$   (2)

is called the $remainder$ and where it is supposed that $f(x)$ has derivatives of order $n$ at least. The case where $n=1$ is often called the $law of the mean$ or $mean-value theorem$ and can be written as

$\cfrac{f(x)-f(a)}{x-a}=f'(x_0)$ $x_0$ between  $a$ and $x$

     The infinite series corresponding to $(1)$ , also called the $formal Taylor series$ for $f(x)$ will converge in some interval if $\displaystyle\lim_{n\to \infty}R_n =0$ in this interval. Some important Taylor series together with their intervals of convergence are as follows.



1. $e^x= 1+x+\cfrac{x^2}{2!}+\cfrac{x^3}{3!}+\cfrac{x^4}{4!}+\dots $ $-\infty < x< \infty $
2. $\sin x=x-\cfrac{x^3}{3!} +\cfrac{x^5}{5!} -\cfrac{x^7}{7!} +\dots $ $-\infty < x< \infty $
3. $\cos x=1-\cfrac{x^2}{2!}+\cfrac{x^4}{4!}-\cfrac{x^6}{6!}+\dots$ $-\infty < x< \infty $
4. $\ln (1+x)=x-\cfrac{x^2}{2}+\cfrac{x^3}{3}-\cfrac{x^4}{4}+\dots $ $-\infty < x< \infty $
5. $\tan ^{-1}x=x-\cfrac{x^3}{3}+\cfrac{x^5}{5}-\cfrac{x^7}{7}+\dots $ $-\infty < x< \infty $

A series of the from $\displaystyle\sum_{n=0}^{\infty}c_n(x-a)^n$ is often called a $power series$. Such power series are uniformly convergent  in any interval which lies entirely within the interval of convergence  

Functions Of Two Or More Variables
     The for example $z=f(x,y)$ defines a function $f$ which assigns to the number pair $(x,y)$ the number $z$ .

     Example If $f(x,y)=x^2+3xy+2y^2$ then $f(-1,2)=(-1)^2+3(-1)(2)+2(2)^2 =3$ 

     The student is familiar with graphing $z=f(x,y)$ in a 3-dimensional $xyz$ coordinate  system to obtain a $surface $. We sometimes call $x$ and $y$ $independent$ variable  and $z$ a symbol $z$ in two different sense . However , no confusion should result .
     The ideas of limits and continuity for functions of two or more variables pattern closely those for one variable.   

Partial

     The partial derivatives of $f(x,y)$ with respect to $x$ and $y$ are defined by

$\cfrac{\partial f}{\partial x}=\lim_{h\to \infty}\cfrac{f(x+h,y)-f(x,y)}{h},\cfrac{\partial f}{\partial y}=\lim_{k\to \infty}\cfrac{f(x,y+k)-f(x,y)}{k}$   $\dots$ (1)

     if these limits exist . We often write $h=\bigtriangleup x,k\bigtriangleup y$ . Note that $\partial f/\partial x$ is simple the ordinary derivative of $f$ with respect to $x$ keeping $y$ constant , while $\partial f/\partial y$ is the ordinary derivative of $f$ with respect to $y$ keeping $x$ constant.

     Example If $f(x,y)=3x^2-4xy+2y^2$ then $\cfrac{\partial f}{\partial x}=6x -4y,\cfrac{\partial f}{\partial y}=-4x+4y$

     Higher derivatives are defined similarly . For example , we have the second order derivatives

$\cfrac{\partial}{\partial x}\left(\cfrac{\partial f}{\partial x}\right)=\cfrac{\partial^2f}{\partial x^2},\cfrac{\partial }{\partial x}\left(\cfrac{\partial f}{\partial y}\right)=\cfrac{\partial^2f}{\partial x\partial y}$ ,$\cfrac{\partial}{\partial y}\left(\cfrac{\partial f}{\partial x}\right)=\cfrac{\partial^2f}{\partial y\partial x},\cfrac{\partial}{\partial y}\left(\cfrac{\partial f}{\partial y}\right)=\cfrac{\partial^2f}{\partial y^2}$   $\dots$(2)

     The derivatives in (1) are sometimes denoted by $f_x$ and $f_y$ . In such case $f_x(a,b),f_y(a,b)$ denote these partial derivatives evaluated at $(a,b)$. Similarly the derivatives in (2) are denoted by $f_{xx},f_{xy},f_{yx},f_{yy}$ respectively . The second and third results in (2) will be the same if $f$ has continuous partial derivatives of second order at least .

     The $differential $ of $f(x,y)$ is defined as

$df =\cfrac{\partial f}{\partial x}dx+\cfrac{\partial f}{\partial y}dy$   $\dots$ (3)

where $h=\bigtriangleup x=dx,k=\bigtriangleup y =dy$.

Generalizations of these results are easily made.

Taylor Series For Functions Of  Two Or More Variables 

     The ideas involved in Taylor series for functions of one variable can be generalize 

     For example ,the Taylor series for $f(x,y)$ about $x=a,y=b$ can be written 

$f(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)+\cfrac{1}{2!}[f_{xx}(a,b)(x-a)^2+2f_{xy}(a,b)(x-a)(y-b)+f_{yy}(a,b)(y-b)^2]+\dots $ (4)  






Wednesday, 22 November 2017

Solutions Of Algebraic Equations

Quadratic Equation : $ax^2 +bx +c=0$

1. $x=\cfrac{-b\pm\sqrt{b^2-4ac}}{2a}$

If $a,b,c$ are real and if  $D=b^2-4ac$ is the $discriminant$, then the roots are 
     (i) real and unequal if $D>0$
     (ii) real and equal if $D=0$
      (iii) complex conjugate if $D<0$

2. If $x_1,x_2$ are roots , then $x_1+x_2=-b/a$ and $x_1x_2=c/a$

Cubic Equation : $x^3+a_1x^2 +a_2x+a_3=0$

Let       $Q =\cfrac{3a_2-a_1^2}{9} , R=\cfrac{9a_1a_2 -27a_3 -2a_1^3}{54},$

              $S=\sqrt[3]{R+\sqrt{Q^3+R^3}} , T=\sqrt[3]{R -\sqrt{Q^3+R^3}}$


1. Solutions :                $\begin{cases} x_1 = S+T-\cfrac{1}{3}a_1 \\ x_2 = -\cfrac{1}{2}(S+T) -\cfrac{1}{3}a_1 +\cfrac{1}{2}i\sqrt{3}(S-T) \\ x_3 =-\cfrac{1}{2}(S+T)-\cfrac{1}{3}a_1 -\cfrac{1}{3}i\sqrt{3}(S-T)   \end{cases}$

If $a_1,a_2,a_3$ are real and if $D=Q^3+R^2$ is the $discriminant$, then 
     (i) one root real and two complex conjugate if $D>0$
     (ii) all roots are real and at least two are equal if $D=0$
     (iii) all roots are real and unequal if $D<0$

If $D<0$, computation is simplified by use of trigonometry .

2. Solutions if $D<0 :   \begin{cases}x_1 = 2\sqrt{-Q}\cos(\cfrac{1}{3}\theta)-\cfrac{1}{3}a_1 \\ x_2 =2\sqrt{-Q}\cos(\cfrac{1}{3}\theta +120^\circ)-\cfrac{1}{3}a_1 \\ x_3=2\sqrt{-Q}\cos(\cfrac{1}{3}\theta +240^\circ)-\cfrac{1}{3}a_1  \end{cases}  $ where $\cos \theta =R/\sqrt{-Q^3}$



3. $x_1+x_2+x_3 =-a_1 ,x_1x_2 +x_2x_3+x_3x_1 =a_2, $  $x_1x_2x_3 =-a_3$

where $x_1,x_2,x_3$ are the three roots .

Quartic Equation : $x^4+a_1x^3+a_2x^2+a_3x+a_4=0$

Let $y_1$ be a root of the cubic equation 

1. $y^3-a_2y^2 +(a_1a_3-4a_4)y+(4a_2a_4-a_3^2-a_1^2a_4)=0$

2. Solutions : The 4 roots of $z^2+\cfrac{1}{2}\{a_1\pm\sqrt{a_1^2 -4a_2+4y_1}\}z+\cfrac{1}{2}\{y_1\mp\sqrt{y_1^2-4a_4}\}=0$

     If all roots of 1 are real , computation is simplified by using that particular real root which produces all real coefficients in the quadratic equation 2 


3.  $\begin{cases}x_1+x_2+x_3+x_4=-a_1 \\ x_1x_2 +x_2x_3 +x_3x_4 +x_4x_1 +x_1x_3 +x_2x_4 =a_2 \\ x_1x_2x_3 +x_2x_3x_4 +x_1x_2x_4 +x_1x_3x_4 =-a_3 \\ x_1x_2x_3x_4=a_4  \end{cases}$ 

where $x_1,x_2,x_3,x_4$ are the four roots .  


Trigonometric Functions

Definition Of Trigonometric Functions For A Right Triangle 

     Triangle $ABC$ has a right angle ($90^circ$) at $C$ and sides of length $a,b,c$ . The trigonometric functions of angle  $A$ are defined as follows.



$1. \sin \text{of} A =\sin A =\cfrac{a}{c} =\cfrac{\text{opposite}}{\text{hypotenuse}}$

$2. cosine \text{of} A = \cos A =\cfrac{b}{c} =\cfrac{\text{adjacent}}{\text{hypotenuse}}$

$3. tangent \text{of} A =\tan A =\cfrac{a}{b} =\cfrac{\text{opposite}}{\text{adjacent}}$

$4. cotangent \text{of} A=\cot A=\cfrac{b}{a}=\cfrac{\text{adjacent}}{\text{opposite}}$

$5. secant \text{of} A=\sec \cfrac{c}{b}=\cfrac{hypotenuse}{\text{adjacent}}$

$6. cosecant \text{of} A=\sec A=\cfrac{c}{a}=\cfrac{\text{hypotenuse}}{\text{opposite}} $


Extensions To Angles Which May Be Greater Than $90^\circ$

     Consider an $xy$ coordinate system . A point  $P$ in the $xy$ plane has  coordinates $(x,y)$ where $x$ is considered as positive along $OX$ and negative along $OX'$ while $y$ is positive along $OY$ and negative along $OY'$ . The distance from origin $O$ to point $P$ is positive and denoted by $r=\sqrt{x^2+y^2}$. The angle $A$ described $counterclockwise$ from $OX$ is considered $positive$ . If it is described $clockwise$ from $OX$ it is considered $negative$. We call $X'OX$ and $Y'OY$ the $x$ and $y$ axis respectively .

     The various quadrants are denotes by I,II,III and IV called the first , second, third and fourth quadrants respectively . In Fig 1 for example, angle $A$ is in the second quadrant while in Fig 2 angle $A$ is in the third quadrant .




$1. \sin A= y/r$

$2. \cos A= x/r$

$3. \tan A=y/x$

$4. \cot A=x/y$

$5. \sec A=r/x$

$6. \csc A=r/y$

Relationship Between Degrees And Radians 

     A $radian$ is that angle $\theta$ subtended at center $O$ of a circle by an arc $MN$ equal to the radius $r$.
     Since $2\pi$ radians = $360^\circ$ we have

1. $1$ radian = $180^\circ /\pi = 57.29577\; 95130\; 8232\; \dots ^\circ$

2. $1^\circ =\pi /180 $ radians = $0.0175\; 32925\; 19943\; 29576\; 92\dots $ radians


Relationships Among Trigonometric Functions 


$1. \tan A=\cfrac{\sin A}{\cos A}$

$2. \cot A=\cfrac{1}{\tan A}=\cfrac{\cos A}{\sin A}$

$3. \sec A=\cfrac{1}{\cos A}$

$4. \csc A=\cfrac{1}{\sin A}$

$5. \sin ^2A+\cos ^2A=1$

$6 \sec ^2-\tan ^2 A=1$

$7. \csc ^2A-\cot ^2 A=1$

Sum ,Difference And Product Of Hyperbolic Functions 

$1. sinh x+ sinh y= 2sinh\cfrac{1}{2}(x+y)cosh \cfrac{1}{2}(x-y)$

$2. sinh x-sinh y=2cosh\cfrac{1}{2}(x+y)sinh \cfrac{1}{2}(x-y)$

$3. cosh x+cosh y=2cosh\cfrac{1}{2}(x+y)cosh\cfrac{1}{2}(x-y)$

$4. cosh x-cosh y =2sinh\cfrac{1}{2}(x+y)sinh\cfrac{1}{2}(x-y)$

$5. sinh xsinh y =\cfrac{1}{2}\{cosh(x+y)-cosh(x-y)\}$

$6. cosh xcosh y =\cfrac{1}{2}\{cosh (x+y)+cosh (x-y)\}$

$7. sinh xcosh y=\cfrac{1}{2}\{sinh(x+y)+sinh(x-y)\}$



Form Mathematical Hanbook

Geometry Formulas

Geometry Formulas 

$A$ = area , $S$ = lateral surface area , $V$ = volume , $h$ = height , $B$ =  area of base , $r$ = radius , $l$ = slant height ,$C$ = circumference , $s$ = arc length   

Parallelogram 


$A=nh$

Triangle



$A=\cfrac{1}{2}bh$

Trapezoid 




$A=\cfrac{1}{2}(a+b)h$


Circle


$A=\pi r^2 ,C=2\pi r$

Sector

$A=\cfrac{1}{2}r^2 \theta ,s=r\theta$


Right Circular Cylinder




$V=\pi r^2 ,S =2\pi rh$

Right Circular Cone



$V=\cfrac{1}{3}\pi r^2 h, S=\pi rl$

Sphere



$V=\cfrac{4}{3}\pi r^3 , S =4\pi r^2$

from calculus


สูตรสำหรับการหาพื้นที่ผิวและปริมาตรของรูปทรงต่างๆ


Tuesday, 21 November 2017

The Binomial Formula and Binomial Coefficients


Factorial $n$

If $n=1,2,3,\dots $ factorial $n$ or $n$ factorial is defined as

1. $n! =1\cdot 2\cdot 3\cdot \cdots n$

We also define $zero factorial $ as

2. $0!=1$

Binomial Formula For Positive Integral $n$ 


If $n=1,2,3,\dots $ then

3. $(x+y)^n=x^n+nx^{n-1}y+\cfrac{n(n-1)}{2!}x^{n-2}y^2+\cfrac{n(n-1)(n-2)}{3!}x^{n-3}y^3+\dots +y^n$

This is called the $binomial formula $ . It can be extended to other values of $n$ and then is an infinite series 

Binomial Coefficients 

The result 3 can also be written

4. $(x+y)^n =x^n+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^2+\binom{n}{3}x^{n-3}y^3+\dots +\binom{n}{n}y^n$

where the coefficients ,called $binomial coefficients$ are given by

5. $\binom{n}{k} =\cfrac{n(n-1)(n-2)\cdots (n-k+1)}{k!}=\cfrac{n!}{k!(n-k)!}=\binom{n}{n-k}$

Properties Of Binomial Coefficients 


6. $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$

This leads to Pascal's triangle 

7. $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots +\binom{n}{n}=2^n$

8. $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots (-1)^n\binom{n}{n}=0$

9. $\binom{n}{n}+\binom{n+1}{n}+\binom{n+2}{n}+\cdots +\binom{n+m}{n}=\binom{n+m+1}{n+1}$

10. $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots =2^{n-1}$

11. $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots =2^{n-1}$

12. $\binom{n}{0}^2+\binom{n}{1}^2+\binom{n}{2}^2+\cdots +\binom{n}{n}^2=\binom{2n}{n}$

13. $\binom{m}{0}\binom{n}{p}+\binom{m}{1}\binom{n}{p-1}+\cdots +\binom{m}{p}\binom{n}{0}=\binom{m+n}{p}$

14. $(1)\binom{n}{1}+(2)\binom{n}{2}+(3)\binom{n}{3}+\cdots +(n)\binom{n}{n}=n2^{n-1}$

15. $(1)\binom{n}{1}-(2)\binom{n}{2}+(3)\binom{n}{3}-\cdots (-1)^{n+1}(n)\binom{n}{n}=0$


Multinomial  Formula


16. $(x_1+x_2+\cdots +x_p)^n=\sum\cfrac{n!}{n_1!n_2!\cdots n_p!}x_1^{n_1}x_2^{n_2}\cdots x_p^{n_p}$

where the sum, denoted by $\sum$ is taken over all nonnegative integers $n_1,n_2, \dots n_p$ for which $n_1+n_2+\cdots +n_p =n$


Special Products and Factors

Special Products and Factors


1. $(x+y)^2 =x^2+2xy+y^2$

2. $(x-y)^2=x^2-2xy+y^2$

3. $(x+y)^3=x^3+3x^2y+3xy^2+y^3$

4. $(x-y)^3=x^3-3x^2y+3xy^2-y^3$

5. $(x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4$

6. $(x-y)^4= x^4-4x^3y+6x^2y^2-4xy^3+y^4$

7. $(x+y)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5$

8. $(x-y)^5=x^5-5x^4y+10x^3y^2+10x^3y^2-10x^2y^3+5xy^4-y^5$

9. $(x+y)^6=x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6$

10. $(x-y)^6=x^6-6x^5y+15x^4y^2-20x^3y^3+15x^2y^4-6xy^5+y^6$

The results 1 to 10 above are special cases of the $binomial formula$

11. $x^2-y^2=(x-y)(x+y)$

12. $x^3-y^3=(x-y)(x^2+xy+y^2)$

13. $x^3+y^3 =(x+y)(x^2-xy+y^2)$

14. $x^4-y^4=(x-y)(x+y)(x^2+y^2)$

15. $x^5-y^5=(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)$

16. $x^5+y^5=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)$

17. $x^6-y^6=(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)$

18. $x^4+x^2y^2+y^4=(x^2+xy+y^2)(x^2-xy+y^2)$

19. $x^4+4y^4 =(x^2+2xy+2y^2)(x^2-2xy+2y^2)$

Some generalization of the above are given by the following results where $n$ is a position integer .

20. $x^{2n+1}-y^{2n+1}=(x-y)(x^{2n}+x^{2n-1}y+x^{2n-2}y^2+\dots +y^{2n})$

                                          $= (x-y)(x^2-2xy\cos\cfrac{2\pi}{2n+1}+y^2)(x^2-2xy\cos\cfrac{4\pi}{2n+1}+y^2)\dots (x^2-2xy\cos\cfrac{2n\pi}{2n+1}+y^2)$

21. $x^{2n+1}+y^{2n+1}=(x+y)(x^{2n}-x^{2n-1}y+x^{2n-2}y^2-\dots +y^{2n})$
                                           $=(x+y)(x^2+2xy\cos\cfrac{2\pi}{2n+1}+y^2)(x^2+2xy\cos\cfrac{4\pi}{2n+1}+y^2)\dots (x^2+2xy\cos\cfrac{2n\pi}{2n+1}+y^2)$

22. $x^{2n}-y^{2n}=(x-y)(x+y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+\dots)(x^{n-1}-x^{n-2}y+x^{n-3}y^2-\dots)$
                               $=(x-y)(x+y)(x^2-2xy\cos\cfrac{\pi}{n}+y^2)(x^2-2xy\cos\cfrac{2\pi}{n}+y^2)$
                                $\dots (x^2-2xy\cos\cfrac{(n-1)\pi}{n}+y^2)$

23. $x^{2n}+y^{2n}=(x^2+2xy\cos\cfrac{\pi}{2n}+y^2)(x^2+2xy\cos\cfrac{3\pi}{2n}+y^2)$
                                  $\dots (x^2+2xy\cos\cfrac{(2n-1)\pi}{2n}+y^2)$


Trigonometric Functions ,Inverse Trigonometric , Hyperbolic Function

Trigonometric Functions 

$\sin x,\cos x,\tan x,\cot x,\sec x,\csc x$ 

Some fundamental relationships among these functions are as follows .

$(a) \sin x=\cos \left(\cfrac{\pi}{2}-x\right) ,\cos x=\sin\left(\cfrac{\pi}{2}-x\right), \tan x=\cfrac{\sin x}{\cos x} , \cot x=\cfrac{\cos x}{\sin x}=\cfrac{1}{\tan x}, \sec x=\cfrac{1}{\cos x}, \csc =\cfrac{1}{\sin x}$

$(a) \sin^2 x+\cos^2 x=1, \sec^2x-\tan^2x=1 ,\csc^2x-\cot^2x=1$

$(c) \sin(-x)=-\sin x,\cos (-x)=\cos x,\tan (-x)=-\tan x$

$(d) \sin(x\pm y)=\sin x\cos y\pm \cos x\sin y,\cos (x\pm y)=\cos x\cos y \mp \sin x\sin y , \tan (x\pm y)=\cfrac{\tan x\pm \tan y}{1\mp \tan x\tan y}$

$(e) A\cos x+B\sin x=\sqrt{A^2+B^2}\sin (x+\alpha)$ where $\tan \alpha =A/B$

     The trigonometric functions are $periodic$ For example $\sin x$ and $\cos x$ shown in Fig 1-1 and 1-2 respectively ,have period $2\pi$





Inverse Trigonometric Function 

     $\sin^{-1} x,\cos^{-1}x,\tan^{-1}x,\cot^{-1}x ,\sec^{-1}x ,\csc^{-1}x$
There are $inverses$ of the trigonometric functions. For example if $\sin x=y$ then $x=\sin^{-1}y,$ or on interchanging $x$ and $y,$ $y=\sin^{-1}x$.

Hyperbolic Functions 

$(a) \mathrm{sinh}x=\cfrac{e^x -e^{-x}}{2}$   $\mathrm{cosh} x=\cfrac{e^x +e^{-x}}{2}$ ,

      $\mathrm{tanh}x=\cfrac{\mathrm{sinh}x}{\mathrm{cosh}x}=\cfrac{e^x-e^{-x}}{e^x+e^{-x}}$   $\mathrm{coth}x=\cfrac{\mathrm{cosh}x}{\mathrm{sinh}x}=\cfrac{1}{\mathrm{tanh}x}=\cfrac{e^x+e^{-x}}{e^x-e^{-x}}$,

$\mathrm{sech}x=\cfrac{1}{\mathrm{cosh}x}=\cfrac{2}{e^x+e^{-x}},$  $\mathrm{csch}x=\cfrac{1}{\mathrm{sinh}x} =\cfrac{2}{e^x-e^{-x}}$

$(b) \mathrm{cosh}^2x-\mathrm{sinh}^2x=1, \mathrm{sech}^2x+\mathrm{tanh}^2x=1, \mathrm{coth}^2x-\mathrm{csch}^2x=1$

$(c) \mathrm{sinh}(x\pm y)= \mathrm{sinh}x\mathrm{cosh}y\pm \mathrm{cosh}x\mathrm{sinh}y$

$\mathrm{cosh}(x\pm y)=\mathrm{cosh}x\mathrm{cosh}y\pm \mathrm{sinh}x\mathrm{sinh}y$

$\mathrm{tanh}(x\pm y)=\cfrac{\mathrm{tanh}x\pm \mathrm{tanh}y}{1\pm \mathrm{tanh}x\mathrm{tanh}y}$

     The inverse hyperbolic function ,given by $\mathrm{sinh}^{-1} x$, $\mathrm{cosh}^{-1} x,etc$ can be expressed in terms of logarithms



by. theory and problems of advanced mathematics

Monday, 20 November 2017

Limits , Continuity ,Derivatives

Limits  

  The functions  $f(x)$ is said to have the $limit$ $l$ as $x$ approaches $a$, abbreviated $\displaystyle\lim_{x\to a} f(x)=l$, if given any number $\epsilon >0$ we can find a number $\delta >0$ such that $|f(x)-l| < \epsilon $ whenever $0<|x-a|<\delta$

     Note that $|p|,i.e.$ the $absolute value$ of $p,$ is equal to $p$ if $p>0,-p$ if $p<0$ and $0$ if $p=0$.

     Example $\displaystyle\lim_{x\to 1} (x^2-4x+8) =5, \displaystyle\lim_{x\to 2}\cfrac{x^2-4}{x-2}=4, \displaystyle\lim_{x\to o}\cfrac{\sin x}{x}=1$

     If $\displaystyle\lim_{x\to a}f_1(x)=l_1$ $\displaystyle\lim_{x\to a}f_2 (x)=l_2$ then we have the following theorems on limits .

$(a)$ $\displaystyle\lim_{x\to a}[f_1(x)\pm f_2(x)] =\displaystyle f_1(x)\pm \displaystyle\lim_{x\to a}f_2(x)=l_1\pm l_2$

$(b)$ $\displaystyle\lim_{x\to a}[f_1 (x)f_2(x)] =\left[\displaystyle\lim_{x_a}f_1(x) \right]\left[\displaystyle\lim_{x\to a}f_2 (x)\right] =l_1 l_2$

$(c)$ $\displaystyle\lim_{x\to a}\cfrac{f_1 (x)}{f_2 (x)}=\cfrac{\displaystyle\lim_{x\to a}f_1 (x)}{\displaystyle\lim_{x\to a}f_2 (x)}=\cfrac{l_1}{l_2}$ if $l_2\neq 0 $


Continuity 

     The function $f(x)$ is said to be $continuous$ at $a$ if $\displaystyle\lim_{x\to a} f(x)=f(a)$.

Example $f(x)=x^2-4x+8$ is continuous at $x=1$ However ,if  $ f(x)=\begin{cases} \cfrac{x^2-4}{x-2} & x\neq 2 \\ 6 & x=2   \end{cases}$ 

Then $f(x)$ is not continuous [or is discontinuous ] at $x=2$ and $x=2$ is called $a$ discontinuous of $f(x)$ 

     If $f(x)$ is continuous at each point of an interval such as $x_1\leqslant\leqq x\leqslant\leqq x_2$ or $x_1< x\leqslant\leqq x_2, x$ etc. it is said to be continuous in the interval .

     If $f_1(x)$ and $f_2(x)$ are continuous in an interval then $f_1(x)\pm f_2(x),f_1(x)f_2(x)$ and $f_1(x)/f_2(x)$ where $f_2(x)\neq 0$ are also continuous in the interval.


Derivatives

     The $derivatives$ of $y=f(x)$ at a point $x$ is defined as

$f'(x)=\displaystyle\lim_{h\to 0}\cfrac{f(x+h)-f(x)}{h}=\displaystyle\lim_(\bigtriangleup x\to 0)\cfrac{\bigtriangleup y}{\bigtriangleup x}=\cfrac{\mathrm{d}y}{\mathrm{d}x}$

Where $h=\bigtriangleup x, \bigtriangleup y=f(x+h)-f(x)=f(x+\bigtriangleup x)-f(x)$ provided the limit exists .

The $differential$ of $y=f(x)$ is defined by

$\mathrm{d}y=f'(x)\mathrm{d}x$ where $\mathrm{d}x=\bigtriangleup x$      

The process of finding derivatives is called $differentiation$ . By taking derivatives of $y'=\mathrm{d}y/\mathrm{d}x=f'(x)$ we can find second. third  and higher order derivatives, denoted by $y'' =\mathrm{d}^2 y/\mathrm{d}x^2 =f''(x),y'''=\mathrm{d}^3y/\mathrm{d}x^3=f'''(x)$ etc.

     Geometrically the derivative of a function $f(x)$ at a point represents the $slope $ of the  $tangent line$ drawn to the curve $y=f(x)$ at the point .

     If a function has a derivative at a point, then it is continuous at the point. However, the converse is not necessarily .

by. theory and problems of advanced mathematics


Differentiation Formulas

Differentiation Formulas


In the following $u,v$ represent functions of $x$ while $a,c,p$ represent constants . We assume of course that the derivatives of $u$ and $v$ exist, i.e. $u$ and $v$ are $differentiable$ .

1. $\cfrac{\mathrm{d}}{\mathrm{d}x}(u\pm v)=\cfrac{\mathrm{d}u}{\mathrm{d}x}\pm \cfrac{\mathrm{d}v}{\mathrm{d}x}$

2. $\cfrac{\mathrm{d}}{\mathrm{d}x}(cu)=c\cfrac{\mathrm{d}u}{\mathrm{d}x}$

3. $\cfrac{\mathrm{d}}{\mathrm{d}x}(uv)=u\cfrac{\mathrm{d}v}{\mathrm{d}x}+v\cfrac{\mathrm{d}u}{\mathrm{d}x}$

4. $\cfrac{\mathrm{d}}{\mathrm{d}x}\left(\cfrac{u}{v}\right) = \cfrac{v(\mathrm{d}u)/\mathrm{d}x -u(\mathrm{d}v/\mathrm{d}x)}{v^2}$

5. $\cfrac{\mathrm{d}}{\mathrm{d}x}u^p =pu^{p-1}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

6. $\cfrac{\mathrm{d}}{\mathrm{d}x}=a^u\ln a$

7. $\cfrac{\mathrm{d}}{\mathrm{d}x}e^u = e^u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

8. $\cfrac{\mathrm{d}}{\mathrm{d}x}\ln u=\cfrac{1}{u}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

9. $\cfrac{\mathrm{d}}{\mathrm{d}x}\sin u=\cos u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

10. $\cfrac{\mathrm{d}}{\mathrm{d}x}\cos u=-\sin u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

11. $\cfrac{\mathrm{d}}{\mathrm{d}x}\tan u=\sec ^2u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

12. $\cfrac{\mathrm{d}}{\mathrm{d}x}\cot u=-\csc ^2u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

13. $\cfrac{\mathrm{d}}{\mathrm{d}x}\sec u=\sec u\tan u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

14. $\cfrac{\mathrm{d}}{\mathrm{d}x}\csc u=-\csc u \cot u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

15. $\cfrac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}u= \cfrac{1}{\sqrt{1-u^3}}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

16. $\cfrac{\mathrm{d}}{\mathrm{d}x}\cos ^{-1}u=\cfrac{-1}{\sqrt{1-u^2}}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

17. $\cfrac{\mathrm{d}}{\mathrm{d}x}\tan^{-1} u=\cfrac{1}{1+u^2}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

18. $\cfrac{d}{\mathrm{d}x}\cot ^{-1} u=\cfrac{-1}{1+u^2}\cfrac{\mathrm{d}u}{\mathrm{d}x}$

19. $\cfrac{\mathrm{d}}{\mathrm{d}x}\mathrm{sinh} \mathrm{cosh} u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

20 $\cfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{cosh} u=\mathrm{sinh} u\cfrac{\mathrm{d}u}{\mathrm{d}x}$

In the special case where $u=x$, the above formulas are simplified since in such case $\cfrac{\mathrm{d}u}{\mathrm{d}x}=1$.

by. theory and problems of advanced mathematics

Table Of Integrals calculus

Table Of Integrals 

Elementary Integrals


1. $\displaystyle\int \mathrm{d}u =u+C$ 

2. $\displaystyle\int a \mathrm{d}u = au+C$

3. $\displaystyle\int [f(u)+g(u)] = \displaystyle\int f(u) \mathrm{d}u +\displaystyle\int g(u) \mathrm{d}u$

4. $\displaystyle\int u^n \mathrm{d}u =\cfrac{u^{n+1}}{n+1}+C        (n \neq -1)$

5. $\displaystyle\int \cfrac{\mathrm{d}u}{u} = \ln |u|+C$

Integrals Containing $a+bu$


6. $\displaystyle\int \cfrac{u\mathrm{d}u}{a+bu} =\cfrac{1}{b^2}[bu-a\ln|a+bu|]+C$

7. $\displaystyle\int \cfrac{u^2\mathrm{d}u}{a+bu} =\cfrac{1}{b^3}\left[\cfrac{1}{2}(a+bu)^2-2a(a+bu)+a^2\ln|a+bu|  \right]+C$

8. $\displaystyle\int \cfrac{u\mathrm{d}u}{(a+bu)^2} = \cfrac{1}{b^2}\left[\cfrac{a}{a+bu}+\ln |a+bu|\right]+C$

9. $\displaystyle\int\cfrac{u^2\mathrm{d}u}{(a+bu)^2} =\cfrac{1}{b^3}\left[bu-\cfrac{a^2}{a+bu}-2a\ln|a+bu|\right]+C$

10. $\displaystyle\int \cfrac{u\mathrm{d}u}{(a+bu)^3}=\cfrac{1}{b^2}\left[\cfrac{a}{2(a+bu)^2}-\cfrac{1}{a+bu} \right]+C$

11. $\displaystyle\int \cfrac{mathrm{d}u}{u(a+bu)} =\cfrac{1}{a}\ln\left|\cfrac{u}{a+bu}\right|+C$

12. $\displaystyle\int \cfrac{\mathrm{d}u}{u^2(a+bu)}=-\cfrac{1}{au}+\cfrac{b}{a^2}\ln\left|\cfrac{a+bu}{u}\right| +C$


13. $\displaystyle\int \cfrac{\mathrm{d}u}{u(a+bu)^2} =\cfrac{1}{a(a+bu)}+\cfrac{1}{a^2}\ln \left|\cfrac{u}{a+bu}\right| +C$


Integrals Containing $\sqrt{a+bu}$ 


14. $\displaystyle\int u\sqrt{a+bu}\mathrm{d}u=\cfrac{2}{15b^2}(3bu-2a)(a+bu)^{\cfrac{3}{2}}+C$

15. $\displaystyle\int u^2\sqrt{a+bu}\mathrm{d}u =\cfrac{2}{105b^3}(15b^2u^2-12abu+8a^2)(a+bu)^{\cfrac{3}{2}}+C$

16. $\displaystyle\int u^n\sqrt{a+bu}\mathrm{d}u =\cfrac{2u^n(a+bu)^{\cfrac{3}{2}}}{b(2n+3)}-\cfrac{2an}{b(2n+3)}\displaystyle\int u^{n-1}\sqrt{a+bu}\mathrm{d}u$

17. $\displaystyle\int\cfrac{u\mathrm{d}u}{\sqrt{a+bu}}=\cfrac{2}{3b^2}(bu-2a)\sqrt{a+bu}+C$

18. $\displaystyle\int \cfrac{u^2\mathrm{d}u}{\sqrt{a+bu}}=\cfrac{2}{15b^3}(3b^2u^2-4abu+8a^2)\sqrt{a+bu}+C$

19. $\displaystyle\int\cfrac{u^n\mathrm{d}u}{\sqrt{a+bu}}=\cfrac{2u^n\sqrt{a+bu}}{b(2n+1)}-\cfrac{2an}{b(2n+1)}\displaystyle\int\cfrac{u^{n-1}\mathrm{d}u}{\sqrt{a+bu}}$

20. $\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{a+bu}} = \begin{cases}  \cfrac{1}{\sqrt{a}}\ln \left|\cfrac{\sqrt{a+bu}-\sqrt{a}}{\sqrt{a+bu}+\sqrt{a}}\right|+C & (a>0) \\ \cfrac{2}{\sqrt{-a}}\tan^{-1}\sqrt{\cfrac{a+bu}{-a}}+C & (a<0) \end{cases}$

21. $\displaystyle\int\cfrac{\mathrm{d}u}{u^n\sqrt{a+bu}}=-\cfrac{\sqrt{a+bu}}{a(n-1)u^{n-1}}-\cfrac{b(2n-3)}{2a(n-1)}\displaystyle\int\cfrac{\mathrm{d}u}{u^{n-1}\sqrt{a+bu}}$

22. $\displaystyle\int\cfrac{\sqrt{a+bu}\mathrm{d}u}{u}=2\sqrt{a+bu}+a\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{a+bu}}$

23. $\displaystyle\int\cfrac{\sqrt{a+bu}\mathrm{d}u}{u^n}=-\cfrac{(a+bu)^{\cfrac{3}{2}}}{a(n-1)u^{n-1}}-\cfrac{b(2n-5)}{2a(n-1)}\displaystyle\int\cfrac{\sqrt{a+bu}\mathrm{d}u}{u^{n-1}}$

Integrals Containing $a^2\pm u^2$ $(a>0)$


24. $\displaystyle\int\cfrac{\mathrm{d}u}{a^2+u^2}=\cfrac{1}{a}\tan ^{-1}\cfrac{u}{a}+C$

25. $\displaystyle\int\cfrac{\mathrm{d}u}{a^2-u^2}=\cfrac{1}{2a}\ln\left|\cfrac{u+a}{u-a}\right| +C$

26. $\displaystyle\int\cfrac{\mathrm{d}u}{u^2-a^2}=\cfrac{1}{2a}\ln\left|\cfrac{u-a}{u+a}\right|+C$