Differentiation Formulas
In the following u,v represent functions of x while a,c,p represent constants . We assume of course that the derivatives of u and v exist, i.e. u and v are differentiable .
1. \cfrac{\mathrm{d}}{\mathrm{d}x}(u\pm v)=\cfrac{\mathrm{d}u}{\mathrm{d}x}\pm \cfrac{\mathrm{d}v}{\mathrm{d}x}
2. \cfrac{\mathrm{d}}{\mathrm{d}x}(cu)=c\cfrac{\mathrm{d}u}{\mathrm{d}x}
3. \cfrac{\mathrm{d}}{\mathrm{d}x}(uv)=u\cfrac{\mathrm{d}v}{\mathrm{d}x}+v\cfrac{\mathrm{d}u}{\mathrm{d}x}
4. \cfrac{\mathrm{d}}{\mathrm{d}x}\left(\cfrac{u}{v}\right) = \cfrac{v(\mathrm{d}u)/\mathrm{d}x -u(\mathrm{d}v/\mathrm{d}x)}{v^2}
5. \cfrac{\mathrm{d}}{\mathrm{d}x}u^p =pu^{p-1}\cfrac{\mathrm{d}u}{\mathrm{d}x}
6. \cfrac{\mathrm{d}}{\mathrm{d}x}=a^u\ln a
7. \cfrac{\mathrm{d}}{\mathrm{d}x}e^u = e^u\cfrac{\mathrm{d}u}{\mathrm{d}x}
8. \cfrac{\mathrm{d}}{\mathrm{d}x}\ln u=\cfrac{1}{u}\cfrac{\mathrm{d}u}{\mathrm{d}x}
9. \cfrac{\mathrm{d}}{\mathrm{d}x}\sin u=\cos u\cfrac{\mathrm{d}u}{\mathrm{d}x}
10. \cfrac{\mathrm{d}}{\mathrm{d}x}\cos u=-\sin u\cfrac{\mathrm{d}u}{\mathrm{d}x}
11. \cfrac{\mathrm{d}}{\mathrm{d}x}\tan u=\sec ^2u\cfrac{\mathrm{d}u}{\mathrm{d}x}
12. \cfrac{\mathrm{d}}{\mathrm{d}x}\cot u=-\csc ^2u\cfrac{\mathrm{d}u}{\mathrm{d}x}
13. \cfrac{\mathrm{d}}{\mathrm{d}x}\sec u=\sec u\tan u\cfrac{\mathrm{d}u}{\mathrm{d}x}
14. \cfrac{\mathrm{d}}{\mathrm{d}x}\csc u=-\csc u \cot u\cfrac{\mathrm{d}u}{\mathrm{d}x}
15. \cfrac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}u= \cfrac{1}{\sqrt{1-u^3}}\cfrac{\mathrm{d}u}{\mathrm{d}x}
16. \cfrac{\mathrm{d}}{\mathrm{d}x}\cos ^{-1}u=\cfrac{-1}{\sqrt{1-u^2}}\cfrac{\mathrm{d}u}{\mathrm{d}x}
17. \cfrac{\mathrm{d}}{\mathrm{d}x}\tan^{-1} u=\cfrac{1}{1+u^2}\cfrac{\mathrm{d}u}{\mathrm{d}x}
18. \cfrac{d}{\mathrm{d}x}\cot ^{-1} u=\cfrac{-1}{1+u^2}\cfrac{\mathrm{d}u}{\mathrm{d}x}
19. \cfrac{\mathrm{d}}{\mathrm{d}x}\mathrm{sinh} \mathrm{cosh} u\cfrac{\mathrm{d}u}{\mathrm{d}x}
20 \cfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{cosh} u=\mathrm{sinh} u\cfrac{\mathrm{d}u}{\mathrm{d}x}
In the special case where u=x, the above formulas are simplified since in such case \cfrac{\mathrm{d}u}{\mathrm{d}x}=1.
by. theory and problems of advanced mathematics
No comments:
Post a Comment